
Abstract-The aim of this study is to investigate the use of a new 
pulse shape to obtain anodal blocking. This new pulse shape 
requires less charge per pulse compared to the conventional 
rectangular pulse and would therefore be safer in a chronic 
application. Computer simulation, used in this study show that 
using modified pulse shapes, charge reduction up 30.4 % to can 
be achieved.         
Keywords - Selective stimulation by nerve size, square pulse, step 
pulse anodal blocking, charge reduction 

 
I. INTRODUCTION 

 
Electrical stimulation of nervous tissue using implanted 

electrodes can be used to induce muscle contraction in 
patients with lesions in the central nervous system. When 
electrical stimulation is applied, large diameter nerve fibers 
need a smaller external stimulus for their activation than 
smaller fibers [1] so electrical stimulation recruits large 
diameter fiber before smaller ones. However, some 
applications in urology, gastroenterology and skeletal muscle 
activation require selective activation of small fibers without 
activating larger ones to obtain their functional goals.  

Theoretical studies [2, 3] and experimental results from 
animal and human studies [2, 4, 5, 6] have shown that reliable 
selective activation of small fibers can be obtained using the 
method of anodal blocking. To obtain anodal blocking a 
tripolar cuff electrode is most commonly used. When external 
stimulation is applied, the fiber membrane is depolarized 
close to cathode and is hyperpolarized close to anode. Due to 
the hyperpolarization, an action potential (AP) can be 
blocked near anodes, both distal and proximal to the cathode. 
As with the excitation, a smaller external stimulus is needed 
for blocking large diameter fibers than for blocking smaller 
fibers. Therefore, first both large and small diameter fibers 
are activated by external stimulation. Then, higher 
stimulation amplitude is applied and propagation of an AP in 
large fibers is blocked.  

A drawback of this technique is that it requires long 
pulses (typically >500 µs) and currents several times higher 
than for the excitation. These currents may cause neural 
damage and electrode contact corrosion, even when the 
pulses are biphasic, charge balanced and when contacts are 
made from materials that can stand high charge delivered 
through them [7]. The reason for this is that the induced 
charge per phase is too high. Therefore, the technique of 
anodal blocking with square pulse might not be safe for 
chronic use. The method would be safer if somehow the 
charge per phase could be reduced. 

Charge reduction might be possible with the following 
idea: In a tripolar cuff configuration, (cathode flanked by two 
anodes), an action potential (AP) is induced under the  
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Fig.1. Stepped pulse: I1-amplitude of the first step, t1-duration of the first 
step, I2-amplitude of the second step, t2-duration of the second step, t-

duration of a stepped pulse 
 
cathode.  When anodal block is applied, the AP is annihilated 
close to the anode, due to a high anodal current.  

However, as some time is needed for an AP to propagate 
from cathode to anode, it is not necessary to apply the high 
anodal current at the very beginning of the pulse [8]. Hence, 
it is possible to apply lower currents at the beginning of the 
pulse, so that the pulse has a shape of a step (Fig. 1).  

In this study the idea of charge reduction has been 
explored using computer simulation.  
 

II. METHODS 
 

A two-part computer model was used for simulation of 
excitation and anodal blocking. The first part is an 
inhomogeneous and anisotropic volume conductor model [3]. 
A symmetrical tripolar cuff electrode with an inner diameter 
of 2 mm was placed around a sacral root of 1.4 mm diameter. 
The distance between contacts was 3 mm and the total length 
of the cuff was 8 mm.  

The second part was a human fiber model [9]. With this 
model, it is possible to simulate excitation and blocking of an 
AP in myelinated fibers. 

In all the simulations, a 12 µm, large fiber on axis of a 
nerve bundle was considered. For this fiber, one node is 
placed close to cathode and one node is placed close to the 
anode. 

In order to investigate charge reduction obtained with the 
stepped pulse, first the parameters of a square pulse needed to 
block the fiber were determined. Therefore, the duration of 
the square pulse t and the amplitude of the blocking current 
Ibl were determined.  
For the stepped pulse, amplitude I1 and duration t1 of the first 
step were given the predefined values, I1 =0.1, 0.25, 0.5 and 
0.75 Ibl, and t1= 25, 50… 175, 200 µs. The amplitude of the 
second step I2 was increased until blocking was obtained.  
 

III. RESULTS 
 

The duration of the square pulse (t=430 µs) was chosen so 
that the blocking current (Ibl=690 µA) and the induced charge 
Q are minimal. The duration of the stepped pulse was the 
same as for the square pulse t=430 µs. 
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A. Blocking current of the stepped pulse I2 
 

Fig. 2 shows the relation between the amplitude of the 
second step I2 and the pulse duration of the first step t1, for 
four different amplitudes of the first step I1. For all the 
amplitudes of I1, the blocking current of the second step I2 
increases as duration of the first step t1 increases. However, 
for I1=0.25 Ibl this increase is the least pronounced and I2  has 
the smallest amplitudes.  

For the longer duration of the first step t1>100 µs, the 
difference between blocking currents for lower (0.1 and 0.25 
Ibl ) and higher (0.5 Ibl  and 0.75 Ibl ) I1 is more pronounced. 
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Fig.2. Blocking current of the second step I2, as a function of duration of the 

first step t1, for four different values of the amplitude of the first step I1. 
 
B. Charge reduction with the stepped pulse 

 
Fig. 3. shows the charge induced by the stepped pulses 

with characteristics given in Fig. 2. Mark o for t1=0 denotes 
charge induced with the square pulse of duration t=430 µs 
and amplitude Ibl.  With the amplitude of the square pulse 
I1=0.1 Ibl and t1=175 µs a maximum charge reduction of 30.4 
% was obtained. 

For I1= 0.1 Ibl  and 0.25 Ibl the induced charge decreases 
with increasing duration of the first step.  For I1= 0.5 Ibl  and 
0.75 Ibl, the induced charge first decreases with increasing 
duration of the first step but starts to increase for t>100 µs. 
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Fig.3. Induced charge Q as a function of duration of the first step t1, for four 
different values of the amplitude of the first step I1. The induced charge for 

the square pulse is given for t1=0 µs and is marked with o. 

For t1≥175 µs it is not possible to obtain blocking with the 
stepped pulse for any amplitude of the first step I1 although 
for lower currents induced charge decrease when duration of 
the first step is increased form 25 to 175 µs. 

 
IV. DISCUSSION 

 
This paper shows that it is possible to reduce the charge per 

pulse by applying the stepped instead of the square pulse to 
obtain the anodal blocking.  

For I1=0.25 Ibl it is possible to obtain the lowest blocking 
current. For I1=0.1 Ibl and 0.25 Ibl the current of the first step 
is too low to induce an AP, but only depolarizes the 
membrane. The AP is generated during the second step. 
Although it would not be possible to obtain blocking with the 
square pulse of amplitude I2 and duration t2, the rise time of 
the AP is shorter so it needs less time to propagate from the 
cathode to the anode because of the previously depolarized 
membrane. For I1=0.25 Ibl depolarization in the first step is 
the highest so amplitude of the second step is the lowest. 

Although blocking current is the lowest for I1=0.25 Ibl, 
induced charge is the smallest for I1=0.1 Ibl because of the 
lowest charge induced in the first step (Fig. 3). Charge 
reduction is possible with all stepped pulses for t1≤150 µs.  

Although duration of high amplitude pulse was decreased, 
it was long enough to produce excitation of small (5 µs) 
fibers. 

In order to validate these theoretical predictions, we plan to 
do acute animal experiments. 
 

V. SUMMARY AND CONCLUSION 
 

The anodal blocking technique for selective activation of 
nerves requires both a relative high current and long pulse 
duration. Such a pulse induces to the underlying tissue a 
charge that may damage the nerves and produce contact 
corrosion in long-term applications.  

Changing the pulse shape from square to the stepped pulses 
will make it possible to reduce the induced charge by almost 
a third.  
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